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Abstract. We propose a method to calculate percolation thresholds pE and their error bars 
Apc of two-dimensional (2D) lattices. The characteristic feature of our method is an efficient 
extraction of information from the results of Monte Carlo (MC) simulations. We apply 
this method to some ZD systems such as a square, KagomC and dice lattice, Penrose tiling 
and a Penrose dual lattice. Our method enables us to estimate thresholds very accurately 
even when we use the MC data obtained from fairly small sizes. For instance, we achieve 
three significant figures for pc from the MC data obtained from lattices with sizes less than 
300 x 300 and the increment 0.002 of p. 

One of the central themes in the investigation of percolation problems is the evaluation 
of percolation thresholds pc (Shante and Kirkpatrick 1971, Stauffer 1985). Exact 
derivation of pc is possible only when the lattice under consideration has some 
topological advantage (Sykes and Essam 1963, 1964). Examples of lucky cases in this 
sense include bond percolation in a square, triangular and honeycomb lattice and site 
percolation in a KagomC lattice. Except for these lucky cases, the determination of 
percolation thresholds p c  depends on the Monte Carlo ( MC) simulations and some 
other methods such as the transfer matrix method (Derrida and De Seze 1982, Saleur 
and Derrida 1985). In any method for estimating p c  numerically, the most important 
factor is the efficiency of extracting significant information from the data obtained for 
systems of finite sizes. On noting this point, it is a purpose of this letter to propose a 
technique to derive an extremely accurate value of pc and its error bar for a given 
two-dimensional (ZD) lattice. 

The outline of this letter is as follows. We first give a definition of several kinds 
of percolating clusters and study probabilities R N ( p )  that we find these percolating 
clusters. On the basis of the assertion that R N (  p) is approximated by an error function, 
we introduce the concept of effective thresholds p,( N) for a system of size N, and we 
give relations which pc( N )  should satisfy. Then we show the way in which p,( N = CO) 
and its error bar Apc are estimated by adapting finite-size scaling for the extrapolation 
from the results of finite systems. We apply our method to bond and site percolation 
in some ZD lattices such as a square, KagomC and dice lattice, Penrose tiling and a 
Penrose dual lattice. 

Here it is worth mentioning the following point. As for Penrose tiling and its 
dual lattice, we pick up a portion of a given N such that the frequency of each 
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vertex is almost equal to the corresponding infinite system. When this consideration 
is made, the dependence of the results on a choice of origin becomes practically 
insignificant. 

Suppose we have a system composed of N elements, being either bonds or 
sites depending on whether we are interested in bond or site percolation. We choose 
M elements at random out of the N elements and regard them as intact while the 
other N -  M elements are assumed to be broken. Then, the problem of percolation 
is to ask if we find a percolating cluster of intact elements at a given concentration 

A cluster could percolate rightward from left to right, or downward from top to 

R k (  p ) :  the probability that we find a rightward percolating cluster; 
R E ( p ) :  the probability that we find a downward percolating cluster; 
R' , (p ) :  the probability that we find a cluster percolating both rightward and 

R x ( p ) :  the probability that we find either a rightward percolating cluster or a 

p = M / ( N +  M ) .  

bottom. We define the following probabilities: 

downward; 

downward percolating cluster, and 

The notation R, D, I,  U and A respectively denotes rightward, downward, intersection 
(I  = R n D), union (U = R U D) and average. 

From the definitions, we have the following relations: 

RRN(p)+RDN((p)=RIN(p)+RUN(p) (2)  

R X ( P ) <  R ; ( p F  RU,(P) (3) 

where the equal signs hold when N + a  in (3). 
For each definition of R E (  p ) ,  X being either A, I or U, we have R;(O) = 0 and 

RE = 1, and R E (  p )  changes from zero to unity as p increases from zero to unity. In 
an infinite system, this change takes place only at the percolation threshold p E =  
p , ( N = c o )  so that R z ( p ) = O  for p < p c  and R z ( p ) =  1 for p > p c .  In other words, 
dRz(p ) /dp  = S(p  -pJ. When the size N is finite, the change is continuous. There 
are some arguments (Stauffer 1985; Efros 1986) that, for p not very far from p c ,  
d R z (  p) /dp is well approximated by a Gaussian function 

where p g (  N )  is the value of p at which RE(  p)  becomes f ;  A; is the standard deviation 
which is expected to decrease when N increases. The character X may denote either 
I, U or A. From (4), we have 

p : ( N ) ~ p 3 N ) + O 4 .  ( 5 )  

Let us denote by Ld a dual lattice of an initial lattice L. Then, we superpose both 
lattices on the same plane and assume that, at each concentration, a bond of Ld is 
intact or broken if the corresponding bond of L is broken or intact, respectively. Under 
this condition, the concentration q of intact bonds in Ld is given by q = 1 - p  where p 
is the concentration of intact bonds in L. Then, we can prove the following relation 
for bond percolation: 

(6) R k ( p ;  bond; L)+Rk(q;bond;  Ld)= 1. 
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Remembering that R$( p) is f at the effective threshold p,"( N), we can derive from 
(6) that 

p t (  N ;  bond; L) + p t (  N ;  bond; L d )  = 1 

pC(w; bond; L ) + p , ( o ~ ;  bond; L d )  = 1.  

( 7 )  

(8) 

which is the finite-size version of the well known relation 

Similar relations naturally hold for site percolation between an initial lattice and its 
matching lattice. 

An important outcome of relation (7) is that, for some special kinds of lattices of 
finite sizes, the effective thresholds p t (  N) are determined exactly if appropriate care 
is taken of the boundaries. For instance, since a square lattice is self-dual, it follows 
immediately from (7) that, for all values of N, 

p t (  N ;  bond; square) = f . (9) 
It is also possible to show, by making use of (8)  and the star-triangle transformation 
(Skyes and Essam 1963), that 

(10) 
where p , ( T )  and pc(H) are respectively the percolation thresholds of an infinite 
triangular and honeycomb lattice. Equation (10) then proves that, for all values of N, 

RA,( p,(T); bond; triangular) = RA,( p,(H); bond; honeycomb) = 4 

p t (  N ;  bond; triangular) = p,"(w; bond; triangular) 

p:( N ;  bond; honeycomb) = pt (00;  bond; honeycomb). 
(1 la)  

(1lb) 
Since a Kagomi lattice is a covering lattice of a honeycomb lattice, we have, for all 
values of N, 

p t (  N ;  site; Kagomi) = p t ( 0 3 ;  bond; honeycomb). (12) 
Equations (9), ( 1 1 )  and (12) assert that p , " ( N )  is independent of N for the above- 
mentioned lattices. As we shall see in what follows, our numerical analyses of other 
lattices imply that this seems to be the case in all the examples we study. 

We now apply the method thus described to five different 2~ lattices; a square and 
Kagomi lattice, periodic with single-valued coordination, the coordination number 
being z = 4; a dice lattice, periodic with mixed-valued coordination, z = 3 and 6, the 
average Z being 4; Penrose tiling, non-periodic with mixed-valued coordination, z = 3, 
4, 5, 6, and 7, the average i being 4; and a Penrose dual lattice, non-periodic with 
single-valued coordination, z = 4. 

In order to determine R , ( p )  of a given problem, we carry out n runs of MC 

simulations for a given concentration p. If we find a percolating cluster in each of m 
out of n runs, we equate R , ( p )  to m/n. We repeat this process for different values 
of p with each increment of 0.002. Then R N ( p )  is given as a function of p at discrete 
p values as expressed by filled and open circles and open squares in figure 1 for 
'average', 'union' and 'intersection', respectively, for a Penrose lattice of size approxi- 
mately 300 x 300. The curves fitted to (4) are illustrated by full curves. The fittings 
are remarkable, thus suggesting that the assumption of the Gaussian function is 
validated. 

The effective thresholds p t (  N )  determined from this curve fitting are listed in table 
1 both for bond and site percolation of the five 2~ lattices (Yonezawa et a1 1989). It 
is readily seen from the table that the effective threshold p t (  N) is almost independent 
of N for all ten cases, thus indicating that p t ( N )  as defined in the above for a finite 



L702 

1 .oo 

0.75 

3 0.54 
d 

0.E 

Letter to the Editor 

L 

COO zoo 100 
0.485 t 

0 
0.425 0.450 0.475 0.500 0.525 

P 

Figure 1. Probabilities R ; ( p )  (O) ,  R h ( p )  (0) and 
R ; ( p )  (0) for the bond problem in Penrose tiling 
with N = 100OOO=310~310. The corresponding 
curves are obtained by the least-mean-square fitting 
on assuming the error function. Note that the scale 
on the p axis is very minute. 
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Figure 2. Three thresholds p : ( N )  (O), p L ( N )  (U)  
and p ; ( N )  (0). L-”” ( = N - ” * ” )  for the bond 
problem in Penrose tiling. 

Table 1. Threshold p : ( N )  of the bond and site problems for five different lattices of 
different sizes. 

N -  Square Kagome Dice Penrose Penrose dual 

Bond 10 OOO 
20 OOO 
50 000 

100 OOO 

Site 5000 
10 OOO 
20 OOO 
50 OOO 

0.5000 
0.4999 
0.5001 
0.5000 

0.5929 
0.5928 
0.5928 
0.5930 

0.5244 
0.5244 
0.5246 
0.5243 

0.6529 
0.6524 
0.6526 
0.6527 

0.4757 0.4770 
0.4759 0.4768 
0.4759 0.4768 
0.4759 0.4770 

0.5857 0.5845 
0.5853 0.5841 
0.5852 0.5842 
0.5854 0.5840 

0.5234 
0.5234 
0.5235 
0.5233 

0.6376 
0.6377 
0.6379 
0.6379 

system gives a very reliable estimate of the percolation threshold in an infinite system. 
This is examined for bond percolation in a square lattice and for site percolation in 
a Kagomk lattice since the exact thresholds are known for these cases. From the table, 
we can observe that, even when the size is as small as 20 x 20 or 30 x 30, the effective 
threshold in either case gives three significant figures. 

When compared with the previous MC simulations for the estimation of p c ,  our 
method is advantageous in the following three points. 

(i) Each MC run requires a relatively short CPU time. For instance, one MC run of 
size N = 100 OOO bonds takes 0.5 s even for disordered systems by HITAC M682H (a 
scalar processor). 
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(ii) The CPU time is nearly proportional to size N, which is remarkable in these 
kinds of simulations. 

(iii) It is possible to obtain a considerably accurate value of pc  even from the 
simulations of a fairly small size. If we take 100 MC runs of size N = 5000 sites as an 
example, they need only three seconds and give three significant figures for pc .  

To the best of the authors’ knowledge, the above three aspects guarantee that the 
efficiency of our method proposed in this letter is higher than that of any other existing 
method due to computer simulations. 

In order to estimate the percolation thresholds of an infinite system, we extrapolate 
p : ( N )  to N + m  by making use of a relation due to the scaling hypothesis (Stanley 
1971): 

p:(  N )  = pc+ AXL-”” 

where X = A, U or I;  v =$, and AX is a constant, A’ being positive and A’ being 
negative, while AA is expected to be zero. 

In figure 2, p:( N) for X = A, U and I are plotted against L-””, where the diameters 
of circles or the edges of squares give a measure for the magnitude of error bars, the 
errors originating from the curve fitting. We choose the extrapolated value p t ( 0 0 )  of 
p t ( N )  into N+oo as an estimated percolation threshold of an infinite system. The 
differences Ipa(00) -p ; (  N)I and Ip?(00) -p:(  N)I provide a measure for the magnitude 
of the error bar to the estimated value p t ( a 7 ) .  The error bar thus determined is less 
than 0.0003 and accordingly the estimated value of p t ( 0 0 )  has three significant figures. 

The thresholds determined from our simulations are compared with some previous 
results in table 2. When previously proposed values for thresholds exist (Sykes and 
Essam 1963, Reynolds et a1 1980, Saleur and Derrida 1985, Lu and Birman 1987, Hori 
1989), the agreement between these values and our results is remarkable, which shows 

Table 2. Thresholds pc derived from our simulations compared with previous results. As 
explained in the text, our results for the threshold are derived from 500 MC runs for each 
p of each size, the largest being 100 000 bonds and 50 000 sites. 

Bond Site 

Our result Previous results Our result Previous results 

Square 0.5001 *OB03  0.51 0.5930 f O . 0 0 0 1  0.5928 i0.000611 
Kagomt 0.5244* 0.0002 0.524430$ 0.6527 * 0.0002 0.652704t 
Dice 0.4760 * 0.003 0.475570$ 0.5851 *0.0004 - 
Penrose 0.4770 * 0.0002 0.483 * 0.0055 0.5837 f 0.0003 - 
Penrose dual 0.5233 f 0.0002 - - 0.6381 f 0.0003 

1 Exact value. 
$ Exact value of Hori (1989). The value of the percolation threshold for the bond problem pc in a KagomQ 
lattice is derived as follows. By a generalised star-triangle transformation, the bond problem in a Kagomt 
lattice is transformed to the mixed bond-site problem in a honeycomb lattice. Then we can get the equation 

~ * ( 3  - 2 ~ ) p a  -3az(1 - ~ ) p f - 3 a ’ p , +  1 = 0 

where u2 is the exact percolation threshold for the bond problem in a honeycomb lattice, i.e. a = 
( 1  -sin ~ / 1 8 ) ” ~ = 0 . 8 0 7  90076. .  . . The solution of the above equation gives the exact pc for the bond 
problem in a Kagomt lattice, pc  = 0.524 408 76. . . . 
P 20 MC runs for 90000 bonds (Lu and Birman 1987). 
11 The transfer matrix method (Derrida and De Seze 1982). 
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the usefulness of our method. The thresholds for bond percolation in a KagomC lattice 
and in a dice lattice satisfy the required relation (7), and so do the thresholds for bond 
percolation in a Penrose lattice and in a Penrose dual lattice. This also lends support 
to the validity of our method. A comprehensive description of our method will be 
published elsewhere (Yonezawa et a1 1989). 
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